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ABSTRACT 

This paper continues the search, started in [10], for relatives of the ham 

sandwich theorem. We prove among other results, the following implica- 

tions 

B ( n  - 1, k - 1) *-.- B(n ,  k ) + -  C(n ,  k) --* K ( n ,  k) ~ K ( n  - 1, k - 1) 

where K ( n ,  k) is an impor tan t  instance of the Knaster ' s  conjecture so that  

K ( n , n  - 1) reduces to the Borsuk-Ulam theorem, B(n ,  k) is a R. Rado 

type s ta tement  about  (k + 1) measures  in R n where B ( n ,  n - 1) tu rns  out  

to be the ham sandwich theorem and C(n,  k) is a topological s ta tement ,  

established in this paper  in the case C(n,  n - 2) , n = 3 or n _> 5. 

Introduction 

This paper  can be seen as a sequel to our paper  [10] which was written, among 

other reasons, to give evidence that  the well known "Ham sandwich theorem" 

can be seen as a distant relative of Helly's convexity theorem. More precisely it 

was shown in [10], see the Theorem A(n, k) below, that  both  the ham sandwich 

theorem and R. Rado's  theorem on the general measure [9], which is known to be 

a measure theoretic equivalent of Helly's convexity theorem, belong to the same 
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family of results about extremal properties of measurable sets or measures in 

the n-dimensional Euclidean space R '~. The papers [1] and [3] are recommended 

as good overviews of some recent applications of Borsuk-Ulam type results in 

Combinatorics and Combinatorial Geometry. Our initial intention was to prove 

another extremal result, see the statement B(n, k) below, about measures de- 

fined in R n, which also contains the ham sandwich theorem as a special case and 

has a clear geometric and combinatorial meaning. Soon after that,  it turned out 

that an important instance of the well known Knaster's conjecture (denoted by 

K(n,  k) in §3 is a "relative" of B(n, k) in the sense that they both follow from the 

same topological conjecture C(n, It). We prove here only the case C(n, n - 2), 

n = 3 or n >_ 5 (see Theorem 2.2), but already this result itself has interest- 

ing consequences. For the reader's convenience, we include the following graph 

of implications which are, together with some other results, established in this 

paper. 

c(.,k) 

/ \ 

B(n - 1, k - 1) ~ B(n, k) K(n ,  k) ~ K(n  - 1, k - 1) 

Note that the horizontal implications are included because this paper contains 

only a proof of the particular cases of C(n, k) mentioned above but we are con- 

vinced that C(n, k) holds in general and believe that the proof should not be 

much more complicated than the proof of Theorem 2.2. Let us also remark that 

C(n, n - 1) is true, B(n, n - 1) is the ham smadwich theorem and g ( n ,  n - 1) is 

the Borsuk-Ulam theorem. 

TIIEOREM A(n ,k )  ([10]): Let Po ,P , , . . . ,Pk ,  0 < k < n - 1, be a collection of 

a-additive probability measures defined on the a-algebra of all Bore1 sets in R n. 

Then there exists a k-dimensional afl:ine subspace d C_ R n such that for every 

dosed h~fsvace H(v ,a )  := {x e R"l < x ,v  ><<_ a} and every i ~ { 1 , 2 , . . . , k } ,  

d C_C_ g ( v ,  a) implies # i (g (v ,  oO) >_ 1/(n - k + 1). 

The proof of this theorem was based on a result about nonexistence of a 

nowhere zero cross-section of a vector bundle over a Grassmannian, which was 

proved with the aid of the theory of Stiefcl-Whitney characteristic classes. Let 

us formulate now the statement B(n, k) which just like A(n, k) contains the ham 

sandwich theorem as a special case. Roughly speaking, B(n, k) says that,  given 
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(k + 1) measures in R n, one can dissect R n into wedge-like cones which all have 

the same measure from the point of view of each of given measures. The analogy 

of B(n,  k) with A(n, k) goes f ~ t h e r  because like in the case of A(n, k), a natural 

vector bundle over the Grassmannian arises and it suffices to prove that this bun- 

dle does not admit a nowhere zero continuous cross-section. However, it seems 

that this result, called C(n, k), is more difficult to establish and as evidence for 

this we show in §3 that one of the main cases of the well known Knaster 's conjec- 

ture can be reduced to exactly the same topological question. Nevertheless, we 

are able to establish B(n,  k) in some particular cases and the isolation of a clear 

topological result responsible, should hopefully lead to the complete solution. We 

intend and hope to return to this topological question in the future. Before we 

formulate B(n , k )  let us fix some notation. Let /X = conv{a0, . . . , am} C_. R n, 

a = 1/ (m+l)(ao+. . .+am) is the barycenter of/k and/ki  the face of/k opposite to 

the vertex ai. Let cone(a , / \ i )  := Ux>_0(a+A(/Xi-a)), cone(A/) := cone (0, Ai). 

The following equality p := aft(A) = Uo<_i<_m cone(a,/ki) is obvious and i fp  ± is 

the linear subspace of R n orthogonal to p and Di := p± + cone(a , / \ i )  a wedge- 

like cone in R n then R n = UO<_i<_m Di and int(Di) N in t (Dj )  -- ~ for i ~ j .  

Given a m-dimensional regular simplex/k C R n, the associated m-dimensional 
• I n  regular simpficial dissection T)(A) := {D,}i=0 will be simply called the dissection 

associated wi th /k .  Let us note that for m = 1 we obtain a hyperplane dissection 

of R".  

In order to avoid unnecessary complications which may arise in dealing with 

general probabilities, we will restrict ourselves to the class P of "admissible" 

probability Borel measures, that is the probability measures which are weak 

limits (see [2]) of probability measures absolutely continuous with respect to 

the Lebesgue measure. This permits us to assume in all arguments that the 

measures in question are continuous and then pass to the limit. Note that all 

combinatorially interesting measures, including the measures supported by finite 

sets in R",  belong to P.  

CONJECTURE B(n, k): Let #o, #1 , . . . ,  #k be a family of admissible, probability 

measures, 0 < k < n - 1, where admissible means that all measures belong to 

the class P defined above. Then there exists a (n - k)-dimensional dissection 
n--k  D(A)  := {Di}i=0 o f R  n such that for every i, 0 < i < k, and s, 0 < s < n - k, 

#i(Ds) >_ 1/ (n - k + 1). SpeciaJ1y, i f  all measures axe continuous then #i (D, )  = 

I~i(Dt) for all i, 0 < i < k, ands,  t, 0 < s , t  < n - k. 
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t. c(n, k) 

C(n, k) is an abbreviation for the main topological statement mentioned in the 

introduction. Before it is formulated, let us recall some familiar facts about vector 

bundles. All groups and base spaces of vector bundles are assumed to be compact. 

Let P ~ X be a principal G-bundle over X,  g a left G-vector space and P x a  V 

the associated vector bundle with fiber V. I f / / i s  a closed subgroup of G then 

P is a principal/-/-bundle over P/I-I and P x/-/V is identified with the pull back 

of the bundle P XG V along the map P / / / ~  P/G = X. A canonical example 

is P = Vn,t, the Stiefel manifold, as a principal O(k)-bundle over X = Gn,k 

the Grassmann manifold. I f / /  = T k TM Z2 ~ "" • Z2, k copies of Z2, is the 

"maximal discrete" torus in O(k) then P / / / =  V,~,k is the flag manifold and both 

Vn,k Xo(k) R k and Vn,k XTk R k are canonical k-plane bundles over Gn,k and V,,,k 

respectively. The nontriviality of the canonical bundle over Vn,k from the point 

of view of existence of cross-sections of associated Whitney sums was analyzed 

in [5] and this topological result played a key role in the proof of the Theorem 

A(n, k) stated above. For a similar reason, we will primarily be interested in an 

analogously constructed bundle in which the group T k is replaced by the cyclic 

g r o u p / / =  Zk+l which is seen in O(k) as the group of all isometrics determined 

as cyclic permutations of vertices of a fixed regular simplex centered at the origin 

in R'*. The analog of the flag bundle is the bundle g~, k := Vn,k/Zk+l which will 

be, till the end of this paper, called the star bundle. As before ( := V,,,k x zk+l Rk 

is the k-plane bundle over V,~,k which is the pull back of the canonical bundle 

over G~,k along the projection V~*,k --* Gn,k. Now we are ready to formulate the 

"Hauptvermutung" of this paper. 

C(n, k): The Whitney sum ~*~ of k copies of the canonical vector bundle over 

V~,,n_ k does not admit a nowhere zero continuous cross-section. 

PROPOSITION 1.1: C(n,k) ~ B(n,k).  

Before we prove this implication, we need an auxiliary proposition which is 

just B(n, O) slightly extended for our purposes. 

PROPOSITION 1.2: Let I~ be a continuous probability measure on R n. Let /k 

be a fixed regular n-dimensional simplex in R" centered at the origin, z + ZX 

its translate and 73(x + A) the associated dissection of R ~ deIined above. Then 

0 ( . ,  ZX):-- {x e R~I(VL e V(z + ZX)) ~(L) > 1 / ( n +  1)} is a nonempty compact, 

c o n v e x  se t .  
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Proof: Let us prove first that O(/l, A) is nonempty. We start with the as- 

sumption t h a t / k  := cony{e0, e l , . . . ,  e ,}  is chosen very big so that  the following 

holds. Let ~7 := conv{~0, ~ , . . . ,  ~n} where 4i := 1/n ~,i#i e1 is the barycenter 

of the face /ki opposite to the vertex ei a n d / V  the simplex obtained from ~7 

by the same procedure, hence /V -- (1/n2)A. The assumption that /~ is big 

means tha t / i ( in t ( /V))  > n/(n + 1). If Di = cone(Ai) := [.JA>0 A/ki and x ~ / k ,  

let 9~(x) := conv{~i[/~(x + Di) >_ 1/(n + 1)}. Now, qa is easily seen to be a 

multivalued, convex, compact, uppersemicontinuous function 9~:/k - ,  A. By the 

Kakutani 's fixed point theorem for some x ~ A, x ~ ~(x) and it remains to be 

checked that  this can happen only if ~o(x) = ~7. Otherwise, x belongs to a proper 

face of V, say x ~ 99(x) = conv{~ili ~ I} # ~7. If x = ~[]aj~j, oej = 0 for j ¢ I ,  

and a .  := max{aj}jei  then 

(1) (x + Dr) N int(A')  = $, 

hence #(x + Dr) < 1/(n + 1) which contradicts v E I. In order to give some firm 

algebraic evidence for (1) let y = ~ Aje i E Dv where Aj > 0 and )% = 0. From 

x = ~ j e l  a ~ i  = ~ s e l  ~i ~ i ~ ( 1 / n ) ~  = ~ ( ~ e z \ l ~ )  a~/n)~  follows x + V = 

~']~(~i + ,Xi)ei where ~i = )-']~je1\{i} aj /n .  In order to show that x + y ~ int(/V) let 

us find the barycentric coordinates flj of x + y relative t o / V .  Easy calculation 

shows that flj = n2(~j + At) - (n - 1) - n2/(n + 1)A, where A = E l L 0  )ti, in 

particular fly = n2~v -- (n -- 1) -- n2/(n  + 1)A. From the definition of ~v and 

maximality of av follows ~v _ (n - 1)/n 2 so ~v <_ -n2 / (n  + 1)~ _< 0. Hence 

+ v ¢ int(LX'). 

Let us show now that O(/~, A) is a convex set. Without loss of generality it 

is enough to prove that 0 , ,  ~ O(p, A) imply tx £ 0(#,  A)  for 0 < t < 1. Let 

D~ := ,x + D~. We are supposed to show that (Vi)~(D~) = ~(D~) = 1/(n + 1) 

imply (Vi)/~(D~) = 1/(n + 1). L e t ,  = ~ )~e~, ~ ~ = 1. It is a trivial but useful 

fact that z e D~ iff ~ = min{)~j}~= 0 so for convenience assume ~0 < ~1 < "'" < 

)~n- 

CLAIM: (Vt)(Yk)D t U. . .  U D~ C_ Do O D, O. . .  O Dk. 

Actually, it is enough to show D~ C DoUD10. . .ODk.  Let z+y  E D~ := x+Dk 
n 

where y = ~_,in=o #iei, /li > 0, # t  = 0. Obviously, x + y = ~i=o(Ai +/~i)ei E 
n {,3j=o Dj. Since Ak = )~k + #k _< min{)~j + pj] j  _< k} we observe that 

A~ + p~ = min{Aj + #j]0_< j _< n} 
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implies t / <  k, i.e. x + u E D,, _C Do U- . -  U Dk. 

From the claim one deduces that for every k 

Do 1 U.-- UD~ C_ D~ U..-U D~ C_ Do U..- UDk. 

From here and the continuity of the measure p one has 

#(D~) +...  + p(D~) <_ #(D~) +...  + #(Dtk) <_ p(Do) +.." + #(Dk) 

and the convexity of O(p, A) is an immediate consequence. 

Remark: Let us note that the Proposition 1.2 in general does not hold if # 

is assumed to be an arbitrary admissible measure. Indeed, if p is the measure 

defined in R 2 such that #({a}) = p({b}) = 1/2 where a # b, then for a generic 

s implex/k,  O(p,/k) consists of the union of two noncollinear segments. I 

Proof of Proposition 1.1: Let us establish the implication C(n, k) =~ B(n, k) 
first for a sequence/t0, p l , . . . ,  pk of continuous probability measures. We identify 

the Stiefel manifold V,,,,,-k with the space of all sequences (a0, a l , . . . ,  an-k)  E 

(Rn) n-k+1 (ordered simplexes) where hi, 0 < i < n - k, are vertices of a regular 

(n-k)-dimensional  simplex in R n centered at the origin. For each of the measures 

pi, O(pl, lk) can be seen as a multivalued, convex, compact cross-section of the 

(n - k)-plane bundle 3' over Vn,n-k which is the pull back of the canonical bundle 

over the Grassmannian Gn,,,-k along the projection Vn,,-k ~ Gn,n-k. The 

obvious invariance of the set O(pi,/X) under the action of the cyclic group of 

isometrics which permutes elements of (ao,al,...,an-k) E Vn,,-k permits us 

to see O(tti , /k*) := O(pi, A) as a multivalued cross-section of the canonical 

(n - k)-plane bundle ~ over the star manifold V,~,,,_ k where/~* E V*,n_ k is the 

orbit of A. Then, ~(A*) := O(#0, A*) @.. .  @ O(/~k, A*) is seen as a multivalued 

section of the Whitney sum ~¢(~+1) of (k + 1) copies of the canonical bundle. In 
k case B(n, k) is false, i.e. if ~=o O(#i, A*) = 0 for all ~*  E V* n,n-k we observe 

that ~(A*) n Diag = 0 where Diag is the diagonal subbundle of ~@(k+l). Let 

L: ~@(k+l) ..., ~@k be a morphism of vector bundles which is on each fibre defined 

by L(Vo,... ,Vk) := (1:1 - V0,...  ,Vk - V0). Then ~ := L o q3 is a nowhere zero, 

multivalued, compact, convex section of (¢~. It was proved in [10] (Proposition 1) 

that under these conditions there exists a nowhere zero, single-valued, continuous 

cross-section of the bundle ~@~ which contradicts C(n, k). Hence, B(n, k) holds 

if all measures are continuous. 
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Now, if #0 , . . . ,  #k are measures which are weak limits P/m ~ #i, rn --, +oo, 

of continuous probability measures, an easy compactness argument permits us 

to assume that there exists a sequence of s implexes/k" converging to a regular 

simplex A such that A m is obtained from B ( n ,  k) applied on the family P / ,  

0 < i < k. To be completely precise, we assume here and further on that all 

measures #i have bounded support and it is easily seen by the same argument 

that this is not a loss of generality. Let us convince ourselves that the dissection 

:D(A) proves B ( n , k )  for measures #i. Let Di E :D(A) and let D~" E :D(A '~) 

be the corresponding wedge-like cones which converge to Di. Also, let sup- 

ports of all measures be contained in a ball O and let U 3_ Di be an open 

set. Then, be the well known characterization of weak convergence (see [2], 

T.2.1.) limsupm P ~ ( U )  < #.i(U). On the other hand, O f3 D~  C_ U if m is big 

enough. Hence, #j(U) _> 1/ (n  - k + 1) for every U and by the a-additivity of 

# j , # j ( D i )  >_ 1 / (n  - k + 1) for all 0 < i , j  <_ n - k. 

2.  P r o o f  o f  B ( n ,  n - 2) 

PROPOSITION 2.1: B ( n , k )  =~ B ( n  - 1,k - 1) 

Proof: If suffices to check B ( n  - 1, k - t)  for continuous measures #i, with 

bounded support, # i ( B )  = 1, 1 < i < k, where B = {x E R"I II z I1_< r}, r > 0. 

Let fi~n0, ra E N, be the measure concentrated at the point zm = (0, Rm)  E R n-1 x 

R = R n, R,n ~ +oo. By B ( n ,  k) applied on the measures ~ n , ~ l , . . .  ,#k, where 

-fij(A) := # j ( A N R " - I ) ,  1 <_ j <_ k, there exists a dissection :D,,(Am) = {D~n}n--0 k, 

Pm := aff(/km), Am = conv{a~}~--0 ~, am = 1/n(ar~ + ' "  + a,~_k), such that 

~'i(D~) _> 1 / (n  - k +  1) for all 0 < i < k. From the definition of #~ there follows 

z,n 6 a,n + p~ and if Rm ~ +oo, /Xm becomes more and more horizontal. By 

compactness we can assume that Am "-* /k where/k C R n-I  and the associated 

dissection T)(A) proves B ( n  - 1, k - 1). | 

THEOREM 2.2: C ( n , n  - 2) Js true for n = 3 and all n >_ 5. 

Proof: We are to show that ($( ,-2)  does not admit a nowhere zero continuous 

cross-section. Let G+,k denote the Grassmann manifold of all oriented k-planes in 

R n. Since Za acts on Vn-2 as a subgroup of S0(2) - S 1, the bundle ( is seen as 

the pull back of the canonical, oriented, 2-dimensional bundle ~ over G+,2. Hence, 

itself is oriented and the Euler class x = e(() is well defined. Nonvanishing of 



28 S.T. VRECICA AND R. T. ZIVALJEVIC Isr. J. Math. 

the Euler class is one of sufficient conditions for nonexistence of a continuous, 

nonzero cross section, hence it is enough to show that x "-2 = e(~ $("-2))  ¢ 0. 

First of all, let us compute the cohomology of G+,2 with integer coefficients. 

We will assume from now on that n >_ 5 and leave it to the reader to convince 

himself that a similar proof holds also for n = 3. The E2-term of the spectral 

sequence associated to the fibration S 1 ~ Yn,2 ~ G+,2 is easily reconstructed 

from the fact that H*(V,,2,Z) -~ H*(S "-~ x S"-2;  Z) for n even, and for n 

odd all groups are zero except for the groups H°(Vn,2, Z) ='~ H2"-a(V,,2,  Z) ='~ 

Z a n d  Hn-I(Vn,2,Z) ~- Z2. For n odd, one deduces that H2i(G .,2,Z~] ~= Z, 
0 < i < n - 2 ,  and for all i, r42/+l/m+ Z) "~ 0. For n even the answer 

is similar except in the middle dimension when I-Tn--2{('2+ Z) ~ Z ~ Z. For 

n odd, all difl'erentials are isomorphisms except d2: E~ -3'I -~ E~ -I'° which is 

multiplication by 2. For n even the answer is similar except for the case of the 

~7"'° but we will not need this information here. middle differential d2: E~ -2'1 ~ ~2 

The diagrams below show the E2-term for the case of G + and G + respectively. 5,2 6,2 

Z 0 Z 0 Z 0 Z 

Z 0 Z 0 Z 0 Z 

Z 0 Z 0 7~@Z 0 Z 0 Z 

Z 0 Z 0 Z ~ Z  0 Z 0 Z 

A generator of H2(G+,2, Z) is identified as the Euler class x = e(() of ( since 

x = d2(y) where y is the generator of E °'1 coming from the orientation of (. Let 

us assume that n is odd. By using the multiplicative structure in E2'* , one obtains 

that  x j is a generator of E~ 1'° and xiy  is a generator of E 2j'1 for 0 < j <_ ( n - 3 ) / 2 .  

For (n - 1)/2 _< j < n - 2, x I = 2g where g E E~ i'° is a generator. In a special 

case which we are particularly interested in, one has x "-2 = 2g. Since G + 2m,2 can 

+ G + be put  in a "sandwich" between two odd Grassmannians, G2m_1, 2 ~ 2m,2 

G+m+l,2, the naturali ty of the Euler class implies (m ~ 2) that x 2m-3 is also a 

multiple by two of a generator in H 2(2"-3) (G+m,2). Since d2:~2~2"~-4'1 ~ ~2~2m-2'° 

is an isomorphism and d2(x~m-3y) = x 2m-2, we conclude that for all n > 5, 
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z "-2 = 29 for a generator G E E~ '-2'° " H2("-2)tG + Z) ~ Z. Let us show t, n,2, 

now that e(~ ~ ( ' -2 ) )  E H2("-2)(V*2, Z) is also different from zero. From the 

commutative diagram of fibrations 

S 1 ~ V.,2 . G+,2 

S'  • V.* P G~ + ,2 " ,2 

and the naturali ty of E2-terms of the corresponding spectral sequences, one ob- 

tains among other things that d2: E~ '-4'1 -4 E~ '-2'°, in the spectral sequence 

associated to V*,~, is multiplication by 3. This means that z "-2 = 29 E E~ '-2'° 

survives to oo, so e(~ ~( ' -2 ) )  = p*(z "-2)  # 0 which proves that ~ ( , , - 2 )  does not 

admit a continuous, nonzero cross section. | 

COROLLARY 2.3: B(n,  n -  2) is true. In other words i f  p l , . . . ,  p,,-1 is a family of 

admissible, probability measures defined in R",  then there exists a 2-dimensiona/ 

dissection :D(A) := {Do,D1,D2} of R"  such that for every i, 0 < i < 2, and s, 

1 < s < n - 1, p i (D, )  _> 1/3. 

Proof: Indeed, B ( n , n  - 2), n > 5, holds by Proposition 1.1 and the theorem 

above, so B(n,  n - 2) follows in the few remaining cases from Proposition 2.1. 

I 

3. Knaster's Conjecture 

Probably the most natural extension of the Borsuk-Ulam theorem is the following 

conjecture which in this or similar form is well known as the Knaster 's conjecture 

(see [3] [6]). 

K N A S T E R ' S  C O N J E C T U R E :  L e t  f :  ,5' n - I  ~ R k be a con t inuous  m a p  a n d  A = 

{ a o , . . . , a n - k }  C_ S n-1 a finite set of points. Then there exists an isometry 

o E O(n) such that f (o(ai))  = f (o (a i )  ) for a11 i, j .  

One can ask for the largest m such that the statement above still holds where 

rn is the cardinality of the set A. This question, or more precisely the question 

for which n, k and A C_ S n-1 the conjecture above holds will be referred to as 

the Knaster 's problem. 

It is a nice observation of V. V. Makeev, [7], that if d := dim aft(A) a neces- 

sary condition for a positive solution to the Knaster 's problem is the following 
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inequality 

(i) d(2n - d - 1) > 2k(m - 1), 

so in case all points in A are in general position one has m < 2(n - k). 

The main objective of this paragraph is to show that  one of the main instances 

of the Knaster ' s  conjecture follows from C(n, k). As a consequence, we are able 

to prove the conjecture in those few cases for which C(n, k) is known. 

Let us start  with the following well known observation which provides an im- 

por tant  link between equivariant maps and cross-sections of vector bundles. 

PROPOSITION 3.1: Let P be a principal G-bundle over X and V a left G-vector 

space. Then all continuous cross-sections of the induced vector bundle P x G V 

are in 1 - 1 correspondence with the G-equivariant maps f:  P --+ V where both 

P and V are seen as right G-spaces, i.e.,/'or g E G and v E V, (v)g := g- iv .  

Let us return now to the inequality (1) above. By inspecting th left hand side 

of (1) one observes that  the likelihood for a counterexample to exist gets bigger 

if dim aft(A) gets smaller. Roughly speaking, in this case o(A) is determined by 

very few members  of A for every o E O(n), which doesn't  give much chance for 

a generic map  f to fulfill the coincidence condition above for some o E O(n). 

So, it seems natural  to pay special attention to the case dim aft(A) = n - k. 

Specially, the simplest situation occurs if A is the set of vertices of a regular 

(n - k)-dimensional simplex in which case we denote the Knaster ' s  conjecture 

above by K(n ,  k). 

PROPOSITION 3.2: C(n, k) => K(n ,  k). 

Proof: As before, the Stiefel manifold is identified with the manifold 

Yn,m := {(a0, . . .  , a~) l  ai e sn-l,conv{ai}m=o is a regular simplex}. 

Vn,r. is, as before, seen as the principal Z, .+l-bundle over the star  manifold 

V*,m := Vn,,n/Zr,+l. For every f :  S n-1 --+ R k one defines F:  V,, ,_~ --+ Wn,k, 

where Wn,k is the orthogonal complement to the diagonal d ~ R k in R ~ x 

• .. x n k ~ R k(n-k+a), by F(ao ,a l , . . .  , an -k )  := P r ( f ( a 0 ) , . . . ,  f ( a , - k ) )  where 

Pr: R k x - . .  x R ~ ~ Wn,k is the orthogonal projection. Now, if K(n ,  k) were 

false then there would exist a nowhere zero Zn_k+l-equivariant map F: Vn,n-k --* 

Wn,~. By Proposition 3.1 this is equivalent to existence of a nonzero continuous 
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cross-section of the bundle V,,,,,-k x z._ k+l W,,k. This contradicts C(n, k) because 

the last bundle is easily seen to be isomorphic to the bundle ~ek where ~ is the 

canonical vector bundle over V,,*.,_ k. | 

So both K(n ,  k) and B(n,  k) are consequences of C(n, k). Let us show now 

that the formal similarity between statements K(n ,  k) and B(n,  k) goes further 

by showing that K(n ,  k) satisfies a proposition similar to Proposition 2.1. 

PROPOSITION 3.3: K(n ,  k) :----* K ( n  - 1, k - 1). 

Proof." Let f :  S "-2 ~ R k-I be a continuous map. Let S "-1 ~ S " - 2 , S  °, that is 

each point z E S "-1 C_ R" is represented uniquely as z = cos(t)e + sin(t)y, where 

e E {en,--en} = S °, y E S n-2 C R n-x and 0 < t < r /2 .  Let ]:  S n-1 ~ R k be 

defined by the formula ](cos(t)e + sin(t)y) := cos(t)e + sin(t) f(y) .  By g ( n ,  k) 

there exists a regular simplex A = {a0 , . . . ,  an,k} C S n-x such that ](ai)  = ] (a j )  

for all i, j .  By the definition of ] it is clear that this complex must be horizontal, 

i.e. A can be taken in S n-~. Hence, f (a i )  = f ( a j )  for all i , j  and g ( n  - 1, k - 1) 

holds. | 

From Theorem 2.2 and Propositions 3.2 and 3.3 one immediately obtains the 

following corollary. 

COROLLARY 3.3: K(n ,  n - 3) is true. /n other words, for every continuous map 

f:  S '*-1 --, R n-2 there exist points ao,al,a~ which are vertices of a regular 

triangle which is inscribed in a great circle o r s  "-~ such that f(a~) = f (a j )  /'or 

all i, j .  

Proof: From Theorem 2.2 and Proposition 3.2 one obtains K(n ,  n - 2 )  for n > 5, 

so the corollary follows from Proposition 3.3. | 
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